If it's not what You are looking for type in the equation solver your own equation and let us solve it.
38x^2=43
We move all terms to the left:
38x^2-(43)=0
a = 38; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·38·(-43)
Δ = 6536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6536}=\sqrt{4*1634}=\sqrt{4}*\sqrt{1634}=2\sqrt{1634}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1634}}{2*38}=\frac{0-2\sqrt{1634}}{76} =-\frac{2\sqrt{1634}}{76} =-\frac{\sqrt{1634}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1634}}{2*38}=\frac{0+2\sqrt{1634}}{76} =\frac{2\sqrt{1634}}{76} =\frac{\sqrt{1634}}{38} $
| x2-8x-7=0 | | -2m+(-1)=-13 | | 22−4j=6 | | 5-x+3·(x+9)=75 | | 4x2+2x+5=0 | | 5j-10=10 | | 5j−10=10 | | 39=3(n-55) | | 3x+12+5-18=180 | | 39=3(n−55) | | 4(-x+1)=36 | | -2(-2x-3)=-3x-15 | | 3z/2=26 | | 5x+9=-141-10xx | | 5x-3(2x-8)=19 | | 3-3x=2x+43 | | 8.8-2.5m=3.3 | | 2(k+3)=9–4k | | 23−3c=20 | | 2(k+3)=9–4k* | | 4c+9=93 | | -6w+16w+6=-4 | | 12v-1-3v=-14v-17 | | 5(v+5)=55 | | 15t−13t+2t=12 | | -11x-9=25x-6(6x-9) | | w+21/9=3 | | 4(m-61)=80 | | (4x-4)10=400 | | 9/25=x/18500 | | 14x+33=19x-17 | | 4(m−61)=80 |